
Confluent Platform

Reference Architecture

© 2020 Confluent, Inc.

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Table of Contents

Confluent Platform Architecture . 1

ZooKeeper. 2

Kafka Brokers . 2

Kafka Connect Workers. 3

Kafka Clients . 4

Kafka Streams API. 4

Confluent ksqlDB Server . 5

Confluent REST Proxy . 5

Confluent Schema Registry . 6

Confluent Replicator . 6

Confluent Self-Balancing Clusters . 7

Confluent Control Center . 7

Tiered Storage . 8

Multi-Region Clusters . 8

Schema Validation . 9

Role-Based Access Control (RBAC), Structured Audit Logs, and Secret Protection . 9

Confluent Operator . 10

Confluent Platform Ansible Playbooks and Templates . 10

Large Cluster Reference Architecture . 11

Small Cluster Reference Architecture . 12

Capacity Planning . 14

Storage . 14

Memory . 15

CPU . 17

Network. 17

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Hardware Recommendations for On-Premises Deployment . 18

Large Cluster . 18

Small Cluster. 19

Public Cloud Deployment . 20

Amazon AWS EC2 . 20

Microsoft Azure . 21

Google Cloud Compute Engine . 22

Conclusion . 22

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Choosing the right deployment model is critical for the success and scalability

of the Confluent event streaming platform. We want to provide the right

hardware (and cloud instances) for each use case to ensure that the system

reliably provides high-throughput and low-latency data streams.

This white paper provides a reference for data architects and system administrators who are planning

to deploy Apache Kafka® and Confluent Platform in production. We discuss important considerations

for production deployments and provide guidelines for the selection of hardware and cloud instances.

We also provide recommendations on how to deploy the Kafka Connect API in production, as well as

components of Confluent Platform that integrate with Apache Kafka, such as the Confluent Schema

Registry, Confluent REST Proxy, and Confluent Control Center.

This document is intended to provide guidelines for self-managing Confluent Platform, either on

premises or in a public cloud. If you are interested in a fully-managed event streaming service, consider

Confluent Cloud.

Confluent Platform Architecture
Apache Kafka is an open source event streaming platform. It provides the basic components necessary

for managing streaming data: Storage (Kafka core), integration (Kafka Connect), and processing

(Kafka Streams). Apache Kafka is proven technology, deployed in countless production environments

and powering some of the world’s largest stream processing systems.

Confluent Platform includes Apache Kafka, as well as selected software projects that are frequently

used with Kafka. It is a one-stop shop for setting up a production-ready event streaming platform.

Among the included projects are clients for the C, C++, Python, .NET, and Go programming languages;

sink and source Connectors for over 100 data systems; Confluent Schema Registry, for managing Kafka

topic metadata; Confluent REST Proxy, for integrating with web applications; and ksqlDB, for SQL-

driven stream processing.

Taking this to the next level, Confluent Platform also addresses requirements of modern platform

streaming applications. It includes:

• Confluent Control Center, for end-to-end monitoring and management

• Confluent Replicator, for managing multi-datacenter deployments

• Confluent Auto Data Balancer, for optimizing resource utilization and easy scalability

• Tiered Storage, for unlimited retention

• Multi-Region Clusters, for high availability

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 1

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

https://www.confluent.io/confluent-cloud/
https://kafka.apache.org/powered-by

• Schema Validation, for data governance

• Kubernetes Operator, for containerized installation and operation

• Ansible Playbooks and Templates, for non-containerized installation and operation

• Role-Based Access Control (RBAC), Structured Audit Logs, and Secret Protection, for enterprise-

grade security

We’ll start by describing the architecture from the ground level up. For each component, we’ll explain

when it is needed and the best plan for deploying it in several scenarios. (We will discuss capacity and

hardware recommendations in a later section.) You should also refer to the installation instructions

provided in the Confluent documentation and the Sizing Calculator for Apache Kafka and Confluent

Platform.

ZooKeeper

ZooKeeper is a centralized service for managing distributed processes. It is a mandatory component in

every Apache Kafka cluster. While the Kafka community has been working to reduce Kafka clients'

dependency on ZooKeeper, Kafka brokers still use ZooKeeper to manage cluster membership and to

elect a cluster controller. ZooKeeper will eventually be fully removed from Apache Kafka with KIP-500.

To provide high availability, you will need at least three ZooKeeper nodes (allowing for one-node failure)

or five nodes (allowing for two-node failures). All ZooKeeper nodes are equivalent, so they usually will

run on identical nodes.

 The number of ZooKeeper nodes MUST be odd.

Kafka Brokers

Apache Kafka uses messaging semantics, and Kafka brokers are Kafka’s main storage and messaging

components. The Kafka cluster maintains streams of messages, called topics; the topics are sharded

into partitions (ordered, immutable logs of messages), and the partitions are replicated and distributed

for high availability. The servers that run the Kafka cluster are called brokers.

You usually will want at least three Kafka brokers in a cluster, each running on a separate server. This

enables you to replicate each Kafka partition at least three times and have a cluster that will survive a

failure of two nodes without data loss.

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 2

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

https://docs.confluent.io/current/installation/installing_cp/index.html
https://docs.confluent.io/current/installation/installing_cp/index.html
https://eventsizer.io/
https://eventsizer.io/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum

If you have three Kafka brokers and any broker becomes unavailable, you will be unable

to create new topics with three replicas until all brokers are available again. For this

reason, if you have use cases that require you to frequently create new topics, we

recommend running at least four brokers in a cluster.

If the Kafka cluster will not experience high load, you may run Kafka brokers on the same servers as the

ZooKeeper nodes. In this case, we recommend that you allocate separate disks for ZooKeeper (as we

will specify in the hardware recommendations below). For high-throughput use cases, we do

recommend that you install Kafka brokers on separate nodes.

In Confluent Platform, a Kafka broker is referred to as Confluent Server.

Kafka Connect Workers

Kafka Connect is an Apache Kafka component that integrates with external systems, allowing you to

pull data from source systems and push data to sink systems. It works as a pluggable interface: you can

plug in a connector for each system with which you want to integrate. For example, to copy data from

MySQL to Kafka and from Kafka to Elasticsearch, you can deploy Kafka Connect with JDBC and

Elasticsearch connectors.

A wide ecosystem of connectors is available on Confluent Hub. Confluent Hub lists over 100 connectors

and other integrations that are commercially supported by Confluent, supplied by partners and verified

by Confluent, or provided by the community. Each connector has its own terms, but many can be

installed directly from Confluent Hub via the Confluent Hub client Command Line Interface (CLI).

Kafka Connect can be deployed in either of two modes:

• Standalone mode: This is similar to how Logstash or Apache Flume are deployed. If you need to

get logs from a specific machine to Kafka, you can run Kafka Connect with a file connector or

spooling directory connector on the machine. It reads the files and sends events to Kafka.

• Cluster mode: This is the recommended deployment mode for Kafka Connect in production. You

install Kafka Connect and its connectors on several machines. They discover each other, with

Kafka brokers serving as the synchronization layer, and they automatically load-balance work and

failover between them. You can connect to any Kafka Connect node (known as a "worker") and

use a REST API to start, stop, pause, resume, or configure connectors anywhere on the cluster.

Regardless of which node you use to start a connector, Kafka Connect determines the optimal

level of parallelism for the connector and starts parallel tasks as needed, on the least-loaded

available worker nodes, to pull or push data.

In standalone mode, you deploy Kafka Connect on the servers that contain files or applications with

which you want to integrate. In cluster mode, Kafka Connect usually runs on a separate set of machines,

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 3

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

https://www.confluent.io/hub/

especially if you plan to run multiple connectors simultaneously. Kafka Connect workers are stateless, so

they also can be safely deployed in containers.

Kafka Clients

Apache Kafka clients are used in the applications that produce and consume events. The Apache Kafka’s

Java client JARs are included in the Confluent Platform Kafka packages and are installed alongside

Kafka brokers, but they are typically deployed with the application. To import the JARs, you can add the

client libraries as application dependencies using a build tool such as Apache Maven.

At the core of Confluent’s other clients (C, C++, Python, .NET, and Go) is librdkafka, Confluent’s C/C++

client for Apache Kafka. librdkafka is an open-source, well-proven, reliable, and high-performance client.

By basing the Python (confluent-kafka-python), .NET (confluent-kafka-dotnet), and Go (confluent-

kafka-go) clients on librdkafka, Confluent provides consistent APIs and semantics, high performance,

and high-quality clients in various programming languages.

Confluent Platform includes the librdkafka packages, and these should be installed on servers where

applications using the C, C++, Python, .NET, or Go clients will be installed.

Kafka Streams API

Kafka Streams, a component of open source Apache Kafka, is a powerful, easy-to-use library for

building highly scalable, fault-tolerant, and stateful distributed stream processing applications on top of

Kafka. It incorporates important stream processing concepts, such as properly distinguishing between

event time and processing time, handling of late-arriving data, and efficient management of application

state.

Kafka Streams is a library that is embedded in the application code (similarly to Eclipse Jetty, for

instance). As such, Kafka Streams does not require allocated servers, but you do need to allocate servers

for applications that use the Kafka Streams library (or at least allocate resources for these applications'

containers). Kafka Streams uses parallel-running tasks for the different partitions and processing

stages in the application, so it benefits from a higher core count. We recommend that you deploy

multiple instances of the application on multiple servers. In this case, the Kafka Streams library will

handle load balancing and failover automatically.

Kafka Streams uses an embedded RocksDB database to maintain its application state. We recommend

that you use persistent SSD disks for the RocksDB storage.

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 4

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

https://docs.confluent.io/current/streams/concepts.html#streams-concepts

Confluent ksqlDB Server

Confluent ksqlDB is a streaming SQL engine that implements continuous queries against Apache Kafka,

using an embedded instance of Kafka Connect. It allows you to query, read, write, and process data with

Apache Kafka in real time and at scale, using SQL-like semantics. You can use the ksqlDB CLI to write

ksqlDB queries interactively. The CLI acts as a client and can run on any machine (server or laptop) that

has access to the ksqlDB server. The ksqlDB server runs the engine that executes queries. Queries can

operate on either streams or tables, and the streams or tables can be backed by pre-existing or derived

Kafka topics or be populated by a specified Kafka connector.

ksqlDB is typically deployed on a set of servers that form a cluster. The number of servers in the cluster

is determined by the processing capacity required. This includes the number of concurrent queries that

will be executed on the cluster, as well as the complexity of the queries. ksqlDB benefits from higher

CPU counts, good network throughput, and SSD storage for its RocksDB state store. A general starting

point for a ksqlDB server is:

• 4 cores

• 32 GB RAM

• 100 GB SSD

• 1 Gbit network

We do not recommend multi-tenant use of ksqlDB. For example, if you run two ksqlDB applications on

the same node, and one application is greedy, you will likely encounter resource issues related to multi-

tenancy. We recommend that you use a single pool of ksqlDB Server instances per use case.

Confluent REST Proxy

The Confluent REST Proxy is a HTTP server that provides a RESTful interface to a Kafka cluster. You can

use it to produce and consume messages, view the state of the cluster, and perform administrative

actions without using the native Kafka protocol or clients. The REST Proxy is not a mandatory

component of the platform. Deploy the REST Proxy if you wish to produce and consume messages to or

from Kafka using a RESTful HTTP protocol. If your applications only use the native clients mentioned

above, you can choose to not deploy the REST Proxy.

The REST Proxy is typically deployed on a separate set of machines. For additional throughput and high

availability, we recommend that you deploy multiple REST Proxy servers behind a sticky load balancer.

When using the high-level consumer API, it is important that all requests to the same consumer are

directed to the same REST Proxy server. As such, you can use the sticky load balancer IP address or

hostname when performing any REST call except for consuming messages. When consuming messages,

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 5

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

use the IP address or hostname returned by the REST API call to create a consumer.

Since REST Proxy servers are stateless, they also can be safely deployed in containers.

Confluent Server contains its own embedded REST Proxy, which can be used for administrative

operations but not for producing or consuming messages.

Confluent Schema Registry

Confluent Schema Registry is a serving layer for your metadata. It provides a RESTful interface for

storing and retrieving Apache Avro schemas. It stores a versioned history of all schemas, provides

multiple compatibility settings, and allows evolution of schemas according to the configured

compatibility setting. The Confluent Schema Registry packages also include serializers, which can be

plugged into Kafka clients and automatically handle schema storage and retrieval for Kafka messages

sent in the Avro format.

Schema Registry is typically installed on its own servers, but in a smaller installation, you can safely

install Schema Registry alongside Confluent REST Proxy and Kafka Connect workers. For high

availability, install multiple Schema Registry servers.

When multiple servers are running, the Schema Registry uses a leader-follower architecture. In this

configuration, only one Schema Registry instance is leader at any given moment. Only the leader can

publish writes to the underlying Kafka log. All nodes can directly serve read requests. Follower nodes

forward write requests to the current leader. Schema Registry stores all of its schemas in Kafka, so

Schema Registry nodes do not require storage and can be deployed in containers.

Confluent Replicator

Confluent Replicator is a component added to Confluent Platform to help manage multi-cluster

deployments of Confluent Platform and Apache Kafka. Replicator provides centralized configuration of

cross-cluster replication. Unlike Apache Kafka’s MirrorMaker, it replicates topic configuration in addition

to topic messages.

Confluent Replicator is integrated with the Kafka Connect framework and should be installed on the

Connect nodes in the destination cluster. If there are multiple Connect worker nodes, install Replicator

on all of them. When installed on a larger number of nodes, Replicator can scale to replicate at higher

throughput and will be highly available through its built-in failover mechanism.

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 6

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Confluent Self-Balancing Clusters

Confluent Self-Balancing Clusters is a component of Confluent Server that optimizes resource

utilization and helps to scale Kafka clusters. Self-Balancing Clusters evaluates information about the

number of brokers, partitions, leaders, and partition sizes, decides on a balanced placement of partitions

on brokers, and modifies the replicas assigned to each broker to achieve a balanced placement. For

example, when a new broker is added to the cluster, Self-Balancing Clusters will move partitions to the

new broker to balance the load between all brokers available in the cluster. To avoid impact on

production workloads, Self-Balancing Clusters throttles the rebalancing traffic to a fraction of the

available network capacity.

You can enable Self-Balancing Clusters via a configuration option in Confluent Server. When enabled, it

runs continuously in the background.

Confluent Auto Data Balancer offers functionality similar to that of Self-Balancing

Clusters. However, we recommend Self-Balancing Clusters over Auto Data Balancer.

We do not recommend simultaneous use of both Auto Data Balancer and Self-

Balancing Clusters.

Confluent Control Center

Confluent Control Center is Confluent’s web-based tool for managing and monitoring Apache Kafka. It

is part of Confluent Platform and provides three key types of functionality for building and monitoring

production data pipelines and streaming applications:

• Data stream monitoring and alerting: You can use Control Center to monitor your data streams

end to end, from producer to consumer. Use Control Center to verify that every message sent is

received (and received only once), and to measure end-to-end system performance. Drill down to

better understand cluster usage and identify any problems. Configure alerts to notify you when

end-to-end performance does not match SLAs, and measure whether messages sent were

received.

• Multi-cluster monitoring and management: A single Control Center node can monitor data flows

in multiple clusters and can manage data replication between the clusters.

• Kafka Connect configuration: You can also use Control Center to manage and monitor Kafka

Connect, the open source toolkit for connecting external systems to Kafka. You can easily add

new sources to load data from external data systems and add new sinks to write data into

external data systems. Additionally, you can use Confluent Control Center to manage, monitor,

and configure connectors.

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 7

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Confluent Control Center currently runs on a single machine. Due to the resources required, we

recommend that you dedicate a separate machine for Control Center.

Tiered Storage

Tiered Storage achieves infinite retention and elastic scalability by offloading older Apache Kafka data

to inexpensive object storage.

In addition to retention, operators now can also define a hot set, which controls the duration for which

messages are stored in Kafka before being offloaded to object storage. When a consumer attempts to

fetch a message that has been offloaded to object storage and is no longer stored in Kafka, the broker

can fetch the message from object storage. As such, producers and consumers do not require any

change in order to use infinite retention, and you not need to install any third-party archive and retrieval

tooling.

You can enable Tiered Storage via configuration options in Confluent Server.

Multi-Region Clusters

Multi-Region Clusters run a single Kafka cluster across multiple datacenters and use automated client

failover to protect against disasters.

Confluent Server is often run across availability zones or nearby datacenters. If the computer network

between brokers across availability zones or nearby datacenters varies in reliability, latency, bandwidth,

or cost, this can result in higher latency, lower throughput, and increased cost for producing and

consuming messages. Multi-Region Clusters comprises three distinct pieces of functionality that have

been added to Apache Kafka and Confluent Server in order to mitigate this effect:

• Follower-Fetching: Follower fetching allows consumers to consume directly from replica followers.

This dramatically reduces the amount of cross-datacenter traffic between clients and brokers.

• Observers: The observer is a new type of partition replica. By default, observers will not join the in-

sync replicas (ISR), but will try to keep up with the leader just like a follower. With follower-

fetching, clients can also consume from observers. By not joining the ISR, observers give operators

the ability to asynchronously replicate data.

• Replica Placement: Replica placement defines the strategy used to assign replicas to partitions in

a topic. This feature relies on the broker.rack property configured for each broker.

You can enable Multi-Region Clusters via configuration options in Confluent Server.

Multi-Region Clusters are distinct from traditional replicator-based HA architecture, and migration from

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 8

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

traditional replicator-based HA to Multi-Region Clusters should be done with care, because independent

clusters may have overlap in metadata such as topic naming, broker IDs, etc.

Schema Validation

Schema Validation ensures data compatibility by validating and enforcing schemas in the Apache Kafka

broker, with topic-level granularity.

Prior to Schema Validation, the Apache Kafka broker would accept whatever data an authorized client

would send to it. Now, using Schema Validation, an operator can require that a message have a schema,

and if the message does not have a schema, it will be rejected.

You can enable Schema Validation per topic using the Confluent CLI.

Role-Based Access Control (RBAC), Structured

Audit Logs, and Secret Protection

These three components provide Confluent Platform users with enterprise-grade security controls.

Role-Based Access Control (RBAC) centrally manages access to critical resources across the entire

platform, with fine-tuned authorization granularity.

RBAC is a method for controlling system access based on roles assigned to users within an organization.

RBAC is defined around predefined roles and the privileges that are associated with those roles (also

known as role bindings). Roles are a collection of permissions that you can bind to a resource; this

binding allows the privileges associated with that role to be performed on that resource. You must grant

the role to a principal at the time that you bind a resource to the role.

Using RBAC, you can manage the users that have access to specific Confluent Platform resources, and

you can manage the actions that a user can perform within each resource. RBAC leverages the

Confluent Platform Metadata Service to configure and manage your RBAC implementation from a

centralized configuration context. This simplifies access management across Confluent Platform

resources.

Structured Audit Logs trace user actions in a set of dedicated Kafka topics, to help operators detect

abnormal behavior and security threats.

Structured Audit Logs provide a way to capture, protect, and preserve authorization activity into topics

in Apache Kafka clusters on Confluent Platform, using the Confluent Server Authorizer. Specifically,

audit logs record the runtime decisions of the permission checks that occur as users attempt to take

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 9

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

actions which are protected by access-control lists (ACLs) and RBAC. Auditable events are recorded in

chronological order (though it is possible for a consumer of audit log messages to fetch them out of

order).

Secret Protection avoids exposure of secrets by encrypting sensitive information (e.g. passwords) that is

stored in configuration files.

Compliance requirements often dictate that services should not store sensitive data as clear text in files.

This sensitive data can include passwords---such as in the configuration parameters

ssl.key.password, ssl.keystore.password, and ssl.truststore.password---or any other

sensitive data in configuration files. You can administer secrets using the Confluent CLI’s confluent
secret commands.

When you run the confluent secret command, Confluent Platform modifies the configuration file,

adding code that directs the configuration resolution system to pull the configuration from a secret

provider. Confluent Platform also creates a second file (the secrets file) that contains the encrypted

secrets.

Confluent Operator

Confluent Operator is ideal for use cases where you are using Kubernetes and want simplified Confluent

Platform installation and operation. Confluent Operator delivers an enterprise-ready implementation of

the Kubernetes Operator API to automate deployment, as well as key lifecycle operations such as rolling

upgrades and recovery, on Kubernetes.

Confluent Platform Ansible Playbooks and

Templates

Confluent Platform Ansible playbooks and templates automate deployment of Confluent Platform in

non-containerized environments, on bare metal or virtual machines.

These Ansible playbooks and templates are ideal for use cases where you are performing a non-

containerized deployment and want simplified Confluent Platform installation and operation. They

deliver tooling both for automating the platform’s deployment, and for performing rolling upgrades as

new versions of the software become available.

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 10

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Large Cluster Reference Architecture
Taking all the recommendations above, a Confluent Platform cluster that is built for high-throughput

long-term scalability will have an architecture similar to the following:

This architecture is designed to scale. Each component is given its own servers, and if any layer becomes

overloaded, you can scale it independently by adding nodes to that specific layer. For example, when

adding applications that use the Confluent REST Proxy, you may find that the REST Proxy no longer

provides the required throughput, while the underlying Kafka brokers still have spare capacity. In this

case, you can scale your entire platform simply by adding REST Proxy nodes.

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 11

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Small Cluster Reference Architecture
Most organizations begin by adopting Confluent Platform for one use case with limited load. When this

adoption proves successful, the organization will expand the cluster to accommodate additional

applications and teams. We recommend this architecture for the early stages of Confluent Platform

adoption, where investment in a full-scale deployment is usually not required for the success of the

project. In these cases, it is best to start with fewer servers and install multiple components per server,

but we recommend that you still provide dedicated servers for several resource-intensive components,

such as Confluent Control Center and Confluent ksqlDB.

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 12

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

This architecture, although requiring far fewer servers, provides the high-availability of

a full-scale cluster. As you expand your usage, you will notice bottlenecks that develop

in the system. We recommend that you start by assigning bottleneck components to

their own servers. When further growth is required, continue to scale by adding servers

to each component. Following this approach, you can eventually evolve the

recommended small cluster architecture to resemble the recommended large scale

architecture.

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 13

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Capacity Planning
When planning your architecture for Confluent Platform, you must provide sufficient resources for the

planned workload. Storage, memory, CPU, and network resources can each be a potential bottleneck,

and should be carefully considered.

Since every component is scalable, you can monitor each node’s usage of storage, memory, and CPU,

and add additional nodes when required. While most components do not store state, you can add nodes

at any time and immediately take advantage of the added capacity. The main exception to this is the

Kafka broker, which serves as the main storage component for the cluster. It is critical to closely monitor

the Kafka brokers and to add capacity and rebalance before any broker is overloaded. As a general rule,

we recommend that you do this whenever a resource reaches 60-70% of capacity. This is because the

rebalancing operation itself will consume resources, and the more resources that are available for

rebalancing, the less time the rebalancing operation will take and the sooner the cluster will resume

operation with additional capacity.

You can monitor performance via Confluent Control Center or using any third-party JMX monitoring

tool. To help you take action proactively, Confluent Control Center enables you to configure alerts for

missed SLAs.

Storage

Storage is mostly a concern with ZooKeeper and Kafka brokers.

For ZooKeeper, your main concern is low latency writes to the transaction log. We recommend that you

use dedicated disks to store the ZooKeeper transaction log, even in small scale deployments where

ZooKeeper is installed alongside the Kafka brokers.

Kafka brokers are the main storage component in a Confluent Platform cluster, and generally require

substantial storage capacity. Most deployments use 6-12 disks, usually with 1 TB of storage each.

Obviously, the exact amount of storage you need will depend on the topic and partition counts, the rate

at which applications write to each topic, and your configured retention policies.

You should also consider the type of storage. SSDs and spinning magnetic drives offer different

performance characteristics. Depending on your use case, the performance benefits of SSDs may be

worth their higher cost. While Kafka brokers write sequentially to each partition, most deployments

store more than one partition per disk, and if your use case requires frequent disk access from Kafka

brokers, minimizing seek times will increase throughput.

For filesystems, we recommend either ext4 or XFS. Both have been tested and used extensively in

production Kafka clusters.

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 14

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Although Confluent Platform supports shared-storage devices, we do not recommend

their use. Confluent Platform is not tested with SAN / NAS. Achieving good

performance and availability when using shared storage requires very careful

configuration.

Confluent Platform’s Tiered Storage supports uses cases where you need to store and access Apache

Kafka data indefinitely. In addition to configuring retention policies, operators now can define a hot set,

which controls how long messages are stored in Apache Kafka before being offloaded to object storage.

When these messages are subsequently accessed, Tiered Storage will automatically fetch them from

object storage if needed.

Confluent Control Center relies on local state stored in RocksDB. We recommend at least 300 GB of

storage space, preferably in SSDs. All local data is stored in the directory specified by the

confluent.controlcenter.data.dir configuration parameter.

Kafka Streams and ksqlDB are both stateful and use RocksDB as a local persistent state store. The

exact use of storage depends on the specific Streams application; aggregation, windowed aggregation,

and windowed joins all use RocksDB to store their state. The size required will depend on the number of

partitions, number of unique keys in the stream (cardinality), size of keys and values, and the retention

for windowed operations (specified in the DSL using the until operator).

 Kafka Streams uses many few file descriptors for its RocksDB storage. Be sure to

increase the number of file descriptors to 64 K or above.

Since calculating exact usage is complex, we typically allocate generous disk space to the Streams

application so as to allow for sufficient local state. 100—300 GB is a good starting point for capacity

planning. Confluent’s ksqlDB performance tests use SSD storage for RocksDB instances, and we

recommend this configuration.

Memory

Sufficient memory is essential for efficient use of almost all Confluent Platform components.

ZooKeeper uses the JVM heap, and 4 GB RAM is typically sufficient. Insufficient heap size will cause

frequent garbage collection and result in high CPU usage, while an oversized heap may result in long

garbage collection pauses and connectivity loss within the ZooKeeper cluster.

Kafka brokers use both the JVM heap and the operating system’s page cache. Brokers use the JVM

heap for replication of partitions between brokers and for log compaction. Replication requires 1 MB

(the default value of the replica.max.fetch.size configuration property) for each partition on the

broker. In Apache Kafka 0.10.1 (Confluent Platform 3.1), a new configuration property,

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 15

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

replica.fetch.response.max.bytes, limits the total RAM used for replication to 10 MB. This avoids

memory and garbage collection issues when there are a high number of partitions on a broker. For log

compaction, calculating required memory is more complicated; if you are using this feature, refer to the

Kafka documentation. For small-sized to medium-sized deployments, 4 GB heap size is usually

sufficient.

In addition, we highly recommend that your consumers always read from memory, i.e. from data that

has been written to Kafka and is still stored in the operating system’s page cache. The amount of

memory that this requires will depends on the rate at which data is written and the expected consumer

lag. If, in a normal scenario, you write 20 GB of data per hour per broker and allow consumers to fall

three hours behind, you should reserve 60 GB for the OS page cache. When consumers are forced to

read from disk, performance will drop significantly.

Kafka Connect itself does not use much memory, but some connectors buffer data internally for

efficiency. If you run multiple connectors that use buffering, increase the JVM heap size to 1 GB or

higher.

The more memory given to Confluent Control Center, the better. We recommend at least 32 GB of

RAM. The JVM heap size can be fairly small (the default is 3 GB), but the application requires additional

memory for RocksDB in-memory indexes and caches and for the operating system page cache, which

provides faster access to persistent data.

Kafka producer clients can achieve higher throughput given generous JVM heap sizes. In order to use the

network more efficiently, Confluent’s clients attempt to batch data as it is sent to brokers. They also

store messages in memory until the messages are acknowledged successfully by the brokers. In the

event of network or leader election issues, sufficient memory for the producer buffers will allow the

producer to continue retrying to send messages to the broker, rather than blocking or throwing

exceptions.

Kafka Streams and ksqlDB have several memory areas, and their total memory usage will depend on

your specific Streams application and on the configuration. Apache Kafka 0.10.1 (Confluent Platform

3.1) adds a Streams buffer cache. By default, it is set to 10 MB. It is controlled through the

cache.max.bytes.buffering configuration. Setting the buffer cache memory to a higher value will

generally result in better performance for your Streams application.

In addition, Streams uses RocksDB memory stores for each partition involved in an aggregation,

windowed aggregation, or windowed join. Kafka Streams exposes the RocksDB configuration, and we

recommend using the RocksDB tuning guide to size these memory stores.

Kafka Streams also uses a Kafka consumer for each thread that you configure for your application.

Each consumer allocates either 1 MB per partition or 50 MB per broker, whichever results in a lower total

memory usage. Since calculation of all of these variables is complex, and since in general, allocating

more memory increases performance of Streams applications, we typically allocate large amounts of

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 16

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

memory, 32 GB and above.

Confluent REST Proxy buffers data for both producers and consumers. Each consumer uses at least 2

MB, and, in cases of receiving a large response from a broker (typical for bursty traffic), up to 64 MB.

Producers have a buffer of 64 MB each. Begin by allocating 1 GB RAM, and add 64 MB for each producer

and 16 MB for each consumer that you plan to support.

 In all cases, we recommend using the JVM’s G1 garbage collection, to minimize

garbage collection overhead.

CPU

Most Confluent Platform components are not especially CPU-bound. Any high CPU usage is usually the

result of a misconfiguration, insufficient allocated memory, or a bug. The exceptions are:

Compression: Kafka producers and consumers can be configured to compress and decompress data.

We recommend that you enable compression, because it improves network and disk utilization.

However, compression does require more client CPU usage. Before Apache Kafka 0.10.0, brokers

decompressed and recompressed messages before storing them to disk, and this increased the brokers'

CPU usage.

Encryption: Starting at version 0.9.0, Kafka clients can communicate with brokers using SSL. Encryption

always brings a small performance overhead on both the client and the broker. Overhead is increased

when the consumer connects over SSL, as the broker must encrypt messages before sending them to

the consumer and cannot use the standard zero-copy optimization. This situation results in significantly

higher CPU usage for the broker. Large scale deployments often go to some lengths to ensure that

consumers are deployed within the same LAN as the brokers, which can omit the requirement of

encryption.

High rate of client requests: If you have a large number of clients, or if consumers are configured with

max.fetch.wait=0, they can send very frequent requests and effectively saturate the broker. In this

situation, you can improve performance by configuring clients to batch requests.

 Many Confluent Platform components are multi-threaded and benefit more from a

large number of cores than from faster cores.

Network

Large-scale Kafka deployments using 1GbE typically become network-bound. If you are planning to scale

the cluster to over 100MB/s, you must provision a higher-bandwidth network.

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 17

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

When provisioning for network capacity, you should take the replication traffic into account and leave

some overhead for rebalancing operations and bursty clients. Network is one of the resources that are

most difficult to provision; if you continue to add nodes, you will eventually run into switch limitations.

We recommend that you consider enabling compression in order to achieve better throughput from

existing network resources.

The Kafka producer will compress messages in batches, so configuring the producer to

send larger batches will result in better compression ratio and improved network

utilization.

Hardware Recommendations for On-

Premises Deployment

Large Cluster

Component Nodes Storage Memory CPU

ZooKeeper 5, for fault tolerance Transaction log: 512

GB SSD

Storage: 2 x 1TB

SATA, RAID 10

32 GB RAM 2-4 cores (typically

not a bottleneck)

Kafka Broker Minimum 3 (more

for additional

storage, RAM,

network throughput)

12 x 1 TB disk. RAID

10 is optional.

Separate OS disks

from Kafka storage.

64 GB RAM+ (more

is better)

Usually dual 12-core

sockets

Kafka Connect Minimum 2, for high

availability

Only required for

installation

0.5-4 GB heap size,

depending on

connectors used

Not typically CPU-

bound; larger

number of cores is

more beneficial than

faster cores

Confluent Schema

Registry

Minimum 2, for high

availability

Only required for

installation

1 GB heap size Not typically CPU-

bound; larger

number of cores is

more beneficial than

faster cores

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 18

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Component Nodes Storage Memory CPU

Confluent REST

Proxy

Minimum 2, for high

availability (more for

additional

throughput)

Only required for

installation

1 GB overhead + 64

MB per producer and

16 MB per consumer

Minimum 16 cores to

handle parallel HTTP

requests and

background threads

for consumers and

producers

ksqlDB Minimum 2, for high

availability (more for

additional

throughput)

SSD; sizing depends

on number of

concurrent queries

and on aggregation

performed

Minimum 20 GB

(Confluent tests use

30 GB)

Minimum 4 cores

Confluent Control

Center

1 Minimum 300 GB

(preferably SSD)

32 GB+ Minimum 8 cores;

ideally more

Small Cluster

Component Nodes Storage Memory CPU

ZooKeeper + Kafka

Broker

Minimum 3 12 x 1 TB disks

1 dedicated disk for

ZooKeeper

transaction log

1-2 dedicated disk(s)

for OS

Remaining disks

dedicated to Kafka

data

64 GB RAM+ (more

is better)

Usually dual 12-core

sockets

Kafka Connect +

Confluent Schema

Registry + Confluent

Rest Proxy

Minimum 2 Only required for

installation

1 GB for Kafka

Connect

1 GB for Schema

Registry

1 GB + 64 MB per

producer + 16 MB per

consumer for REST

Proxy

Minimum 16 cores

ksqlDB Minimum 2, for high

availability (more for

additional

throughput)

SSD; sizing depends

on number of

concurrent queries

and on aggregation

performed

Minimum 20 GB

(Confluent tests use

30 GB)

Minimum 4 cores

Confluent Control

Center

1 Minimum 300 GB

(preferably SSD)

32 GB+ Minimum 8 cores

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 19

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Public Cloud Deployment
Today, many deployments run on public clouds, where node sizing is more flexible than ever before. The

hardware recommendations discussed earlier are applicable when provisioning cloud instances. Special

considerations to take into account are:

• Cores: Cloud providers use "virtual" cores when sizing machines. These are typically weaker than

the modern cores you would use in your data center. You may need to scale up the number of

cores when planning cloud deployments.

• Network: Most cloud providers only provide 10GbE on their highest-tier nodes. Ensure that after

taking replication traffic into account, your cluster has sufficient nodes and network capacity to

provide the required throughput.

Below are some examples of instance types that can be used in various cloud providers. Note that cloud

offerings continuously evolve and that typically a variety of nodes share similar characteristics. This

should not present a problem as long as you adhere to the hardware recommendations. The instance

types below are only examples.

While the examples below show each component on a separate node, some operations teams prefer to

standardize on a single instance type. This approach is easier for automation, but it also requires that

you standardize on the largest required instance type. In this case, you may choose to co-locate some

services, as long as each instance has sufficient resources for all of the co-located components on the

instance.

You will need multiple instances of each node. Our previous recommendations regarding the number of

Kafka brokers, Confluent REST Proxy servers, Kafka Connect workers, etc. still apply.

Amazon AWS EC2

Component Node Type Memory CPU Storage Network

ZooKeeper m5.large 8 GB 2 vCPU 1 x 32 GB SSD Up to 10 Gbps

Kafka broker r5.xlarge 30.5 GB 4 vCPU SSD-based EBS

storage

Configure the

instances as

“EBS Optimized”

Up to 10 Gbps

Kafka Connect c5.xlarge 8 GB 4 vCPU Use EBS Up to 10 Gbps

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 20

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

Confluent REST

Proxy

c5.xlarge 8 GB 4 vCPU Use EBS Up to 10 Gbps

Confluent

Schema Registry

m5.large 8 GB 2 vCPU Use EBS Up to 10 Gbps

Confluent KSQL i3.xlarge or

r5.xlarge

30.5 GB 4 vCPU Use EBS (SSD,

optimized)

Up to 10 Gbps

Confluent

Control Center

m5.2xlarge 32 GB 8 vCPU Use EBS (SSD,

optimized)

Up to 10 Gbps

In past versions of this document, we also recommended use of "Storage Optimized"

instances with local SSDs for Kafka brokers. At the time, we had concerns about EBS

stability, latency, and throughput. Our experience in the past year has shown us that

EBS is stable and can deliver the latency and throughput required by users of

Confluent Platform. AWS gives you a choice of four tiers of EBS performance and

"EBS Optimized Instances" with QoS guarantees. This is useful in cases where

consistent storage performance is important.

Microsoft Azure

Component Node Type Memory CPU Storage Network

ZooKeeper DS3v2 14 GiB 4vCPU P6 Premium

Storage

high

Kafka broker DS4v2 28 GiB 8 vCPU S30 Managed

disks

high

DS5v2 56 GiB 16 vCPU 7 x P30 Premium

Storage

high

Kafka Connect A4v2 8 GiB 4 vCPU None high

Confluent

Schema Registry

A2v2 4 GiB 2 vCPU None moderate

Confluent REST

Proxy

A4v2 8 GiB 4 vCPU None high

Confluent

Control Center

DS4v2 28 GiB 8 vCPU None high

Azure networking uses private IPs within the deployed VNet. Accessing the nodes from outside of

Confluent node’s region requires a network gateway. Azure provides gateways in three flavors:

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 21

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

• VPN Gateway https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-plan-design

• Public IP Gateway https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-

public-ip-address

• Express Route Gateways https://docs.microsoft.com/en-us/azure/expressroute/expressroute-

introduction

To ensure proper network connectivity, review the throughput limits of each type of gateway.

Google Cloud Compute Engine

Component Node Type Memory CPU Storage Network

ZooKeeper n1-standard-2 7.5 GB 2 vCPU Zonal SSD

persistent disks

Kafka broker n1-highmem-4 26 GB 4 vCPU Zonal Standard

persistent disks

Kafka Connect n1-standard-4 15 GB 4 vCPU Zonal Standard

persistent disks

Confluent REST

Proxy

n1-standard-4 15 GB 4 vCPU Zonal Standard

persistent disks

Confluent

Schema Registry

n1-standard-2 7.5 GB 2 vCPU Zonal Standard

persistent disks

Confluent KSQL n1-highmem-4 26 GB 4 vCPU Zonal SSD

persistent disks

Confluent

Control Center

n1-highmem-8 52 GB 8 vCPU Zonal SSD

persistent disks

GCP persistent disks can be sized up to 64 TB, which is more than recommended by

Confluent. For storage specifics, follow the recommendations for on-premises

deployment.

Conclusion
This white paper is intended to share some of our best practices for deployments of Confluent Platform.

Of course, each use case and workload is slightly different, and the best architectures are tailored to the

specific requirements of the organization. When designing an architecture, considerations such as

workload characteristics, access patterns, and SLAs are very important, but they are too specific to

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 22

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-plan-design
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-public-ip-address
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-public-ip-address
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction

cover here. For help in choosing the right deployment strategy for your specific use cases, we

recommend that you engage with Confluent Professional Services for architecture and operational

review.

Confluent Platform Reference Architecture

© 2014-2020 Confluent, Inc. 23

E6636BC20180234D78A0072836F0B150E2B9B20C12C18B70ABD98631B1C32B51CB4CBE3831515B0B22392B08C84656EB0509215A61D0FB511BBFC22D754E22D7241FB9ADC525B6E734BD2D4765274CC2AEF1ED77704F55E428D9919811E6BC58DFC629952E3

	Confluent Platform Reference Architecture
	Table of Contents
	Confluent Platform Architecture
	ZooKeeper
	Kafka Brokers
	Kafka Connect Workers
	Kafka Clients
	Kafka Streams API
	Confluent ksqlDB Server
	Confluent REST Proxy
	Confluent Schema Registry
	Confluent Replicator
	Confluent Self-Balancing Clusters
	Confluent Control Center
	Tiered Storage
	Multi-Region Clusters
	Schema Validation
	Role-Based Access Control (RBAC), Structured Audit Logs, and Secret Protection
	Confluent Operator
	Confluent Platform Ansible Playbooks and Templates

	Large Cluster Reference Architecture
	Small Cluster Reference Architecture
	Capacity Planning
	Storage
	Memory
	CPU
	Network

	Hardware Recommendations for On-Premises Deployment
	Large Cluster
	Small Cluster

	Public Cloud Deployment
	Amazon AWS EC2
	Microsoft Azure
	Google Cloud Compute Engine

	Conclusion

